Project Title	Funding	Strategic Plan Objective	Institution
•	5	-	
Young development of a novel PET ligand for detecting oxytocin receptors in brain (supplement)	\$176,000	Q2.Other	Emory University
Young development of a novel PET ligand for detecting oxytocin receptors in brain	\$261,360	Q2.Other	Emory University
Why are autistic females rare and severe? An approach to autism gene identification.	\$28,600	Q2.S.B	Johns Hopkins University
Using fruit flies to map the network of autism-associated genes	\$156,245	Q2.Other	University of California, San Diego
Urokinase-type plasminogen activator plasma concentration and its relationship to hepatocyte growth factor (HGF) and GABA levels in autistic children	\$8,505	Q2.Other	Hartwick College
Upper motor neuron plasticity in the MeCP2-duplication syndrome of autism	\$62,500	Q2.S.D	Baylor College of Medicine
Understanding the role of Epac2 in cognitive function	\$47,232	Q2.Other	Northwestern University
Understanding the basic neurobiology of Pitt-Hopkins syndrome	\$60,000	Q2.S.D	The University of Alabama at Birmingham
Underlying mechanisms in a cerebellum-dependent model of autism	\$60,000	Q2.S.D	Harvard Medical School
TrkB agonist therapy for sensorimotor dysfunction in Rett syndrome	\$147,806	Q2.S.D	Case Western Reserve University
Translational regulation of adult neural stem cells	\$396,944	Q2.S.D	University of Wisconsin - Madison
Transcriptional responsiveness in lymphoblastoid cell lines	\$0	Q2.Other	University of Pennsylvania
TMLHE deficiency and a carnitine hypothesis for autism	\$60,000	Q2.S.D	Baylor College of Medicine
The striatal circuitry underlying autistic-like behaviors	\$31,975	Q2.Other	Duke University
The role of UBE3A in autism	\$312,501	Q2.S.D	Harvard Medical School
The role of the new mTOR complex, mTORC2, in autism spectrum disorders	\$625,998	Q2.Other	Baylor College of Medicine
The role of the GRIP protein complex in AMPA receptor trafficking and autism spectrum disorders	\$0	Q2.Other	Johns Hopkins University
The role of neurexin IV in central nervous system development	\$100,466	Q2.Other	University of California, Los Angeles
The role of MeCP2 in Rett syndrome	\$382,858	Q2.S.D	University of California, Davis
The role of intracellular metabotropic glutamate receptor 5 at the synapse	\$13,400	Q2.S.D	Washington University in St. Louis
The role of genetics in communication deficits in autism spectrum disorders	\$60,000	Q2.S.D	University of Pennsylvania
The role of Fox-1 in neurodevelopment and autistic spectrum disorder	\$145,757	Q2.Other	University of California, Los Angeles
The role of CNTNAP2 in embryonic neural stem cell regulation	\$0	Q2.Other	Johns Hopkins University School of Medicine
The microRNA pathway in translational regulation of neuronal development	\$352,647	Q2.S.D	University of Massachusetts Medical School

Project Title	Funding	Strategic Plan Objective	Institution
The impact of Pten signaling on neuronal form and function	\$346,014	Q2.Other	Dartmouth College
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Q2.S.D	Children's Memorial Hospital, Chicago
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$395,134	Q2.S.D	University of Illinois at Urbana Champaign
Study of fragile X mental retardation protein in synaptic function and plasticity	\$317,077	Q2.S.D	University of Texas Southwestern Medical Center
Studying Rett and Fragile X syndrome in human ES cells using TALEN technology	\$0	Q2.S.D	Whitehead Institute for Biomedical Research
Shank3 in synaptic function and autism	\$401,250	Q2.Other	Massachusetts Institute of Technology
Serotonin signal transduction in two groups of autistic patients	\$0	Q2.Other	University of Illinois at Chicago
Semaphorin4D and PlexinB1 mediate GABAergic synapse development in mammalian CNS	\$27,814	Q2.Other	Brandeis University
Self-injurious behavior: An animal model of an autism endophenotype	\$0	Q2.Other	University of Florida
Roles of miRNAs in regulation of Foxp2 and in autism	\$45,000	Q2.Other	Louisiana State University
Role of Sema7A in functional organization of neocortex	\$423,750	Q2.S.D	Mount Sinai School of Medicine
Role of neuronal migration genes in synaptogenesis and plasticity	\$52,190	Q2.Other	Weill Cornell Medical College
Role of neurexin in the amygdala and associated fear memory	\$175,000	Q2.Other	Columbia University
Role of negative regulators of FGF signaling in frontal cortex development and autism	\$45,000	Q2.Other	University of California, San Francisco
Role of major vault protein in autism	\$59,972	Q2.Other	Yale University
Role of intracellular mGluR5 in fragile X syndrome and autism	\$75,000	Q2.S.D	Washington University in St. Louis
Role of GluK6 in cerebella circuitry development	\$58,442	Q2.Other	Yale University
Role of CNTNAP2 in neuronal structural development and synaptic transmission	\$53,500	Q2.Other	Stanford University
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$0	Q2.Other	University of California, Los Angeles
RNA dysregulation in autism	\$125,000	Q2.Other	The Rockefeller University
Revealing protein synthesis defects in fragile X syndrome with new chemical tools	\$340,520	Q2.S.D	Stanford University
Retrograde synaptic signaling by Neurexin and Neuroligin in C. elegans	\$250,000	Q2.Other	Massachusetts General Hospital
Regulation of synaptogenesis by cyclin-dependent kinase 5	\$0	Q2.Other	Massachusetts Institute of Technology

Project Title	Funding	Strategic Plan Objective	Institution	
Regulation of spine morphogenesis by NrCAM	\$185,000	Q2.Other	University of North Carolina at Chapel Hill	
Regulation of cortical critical periods in a mouse model of autism	\$60,000	Q2.S.D	Northwestern University	
Regulation of 22q11 genes in embroyonic and adult orebrain (supplement)	\$24,262	Q2.S.D	George Washington University	
Regulation of 22q11 genes in embroyonic and adult orebrain	\$308,631	Q2.S.D	George Washington University	
Quantitative proteomic approach towards understanding and treating autism	\$75,000	Q2.S.D	Emory University	
Proteome and interaction networks in autism	\$156,250	Q2.Other	Harvard Medical School	
Probing synaptic receptor composition in mouse models of autism	\$124,998	Q2.S.D	Boston Children's Hospital	
Probing a monogenic form of autism from molecules to behavior	\$0	Q2.S.D	Stanford University	
Presynaptic regulation of quantal size by the cation/H+ exchangers NHE6 & NHE9	\$33,932	Q2.Other	University of California, Berkeley	
Pleiotropic roles of dyslexia genes in neurodevelopmental language impairments	\$42,232	Q2.S.D	Yale University	
PI3K/mTOR signaling as a novel biomarker and herapeutic target in autism	\$0	Q2.Other	Emory University	
Physiological studies in a human stem cell model of 15q duplication syndrome	\$60,000	Q2.S.D	University of Connecticut	
Perturbed cortical patterning in autism	\$60,000	Q2.Other	Seattle Children's Hospital	
Pathophysiology of MECP2 spectrum disorders (Career Development Award Proposal)	\$179,981	Q2.S.D	Baylor College of Medicine	
Olfactory abnormalities in the modeling of Rett syndrome	\$351,575	Q2.S.D	Johns Hopkins University	
lovel candidate mechanisms of fragile X syndrome	\$92,448	Q2.S.D	Yale University	
New approaches to local translation: SpaceSTAMP of proteins synthesized in axons	\$419,095	Q2.S.D	Dana-Farber Cancer Institute	
leuropeptide regulation of juvenile social behaviors	\$29,550	Q2.Other	Boston College	
leuroligin, oxidative stress and autism	\$150,000	Q2.Other	Oklahoma Medical Research Foundation	
leurobiology of RAI1, the causal gene for Smith- lagenis syndrome	\$155,380	Q2.S.D	Stanford University	
Neurobiological mechanism of 15q11-13 duplication autism spectrum disorder	\$380,625	Q2.S.D	Beth Israel Deaconess Medical Center	
leurexin-neuroligin trans-synaptic interaction in learning nd memory	\$200,000	Q2.Other	Columbia University	
Multigenic basis for autism linked to 22q13 chromosomal egion	\$125,000	Q2.S.D	Hunter College of the City University of New York (CUNY) jointly with Research Foundation of CUNY	

Project Title	Funding	Strategic Plan Objective	Institution
MTHFR functional polymorphism C677T and genomic instability in the etiology of idiopathic autism in simplex families	\$0	Q2.Other	Queen's University
Mouse models of human autism spectrum disorders: Gene targeting in specific brain regions	\$400,000	Q2.S.D	University of Texas Southwestern Medical Center
Morphogenesis and function of the cerebral cortex	\$409,613	Q2.Other	Yale University
Molecular signatures of autism genes and the 16p11.2 deletion	\$62,500	Q2.Other	Massachusetts General Hospital
Molecular mechanisms of the synaptic organizer alphaneurexin	\$383,267	Q2.Other	University of Michigan
Molecular dissection of calmodulin domain functions	\$321,473	Q2.Other	University of Iowa
Modulation of RhoA signaling by the mRNA binding protein hnRNPQ1	\$30,912	Q2.Other	Emory University
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$0	Q2.S.D	Stanford University
Modeling 5-HT-absorbing neurons in neuropathology of autism	\$250,500	Q2.Other	Albert Einstein College of Medicine of Yeshiva University
MicroRNAs in synaptic plasticity and behaviors relevant to autism	\$131,220	Q2.S.D	Massachusetts General Hospital
Met signaling in neural development and circuitry formation	\$249,000	Q2.Other	University of Arizona
Mesocorticolimbic dopamine circuitry in mouse models of autism	\$436,362	Q2.S.D	Stanford University
MeCP2 modulation of BDNF signaling: Shared mechanisms of Rett and autism	\$314,059	Q2.S.D	University of Alabama at Birmingham
Mechanisms of synapse elimination by autism-linked genes	\$434,883	Q2.S.D	University of Texas Southwestern Medical Center
Mechanisms of mGluR5 function and dysfunction in mouse autism models	\$406,760	Q2.S.D	University of Texas Southwestern Medical Center
Mechanism of UBE3A imprint in neurodevelopment	\$34,439	Q2.S.D	University of California, Davis
Making the connection between autism, serotonin and hedgehog signaling	\$125,635	Q2.S.D	Medical Research Council-National Institute for Medical Research
Macrocephalic autism: Exploring and exploiting the role of PTEN	\$0	Q2.Other	University of Wisconsin - Madison
L-type calcium channel regulation of neuronal differentiation	\$33,002	Q2.S.D	Stanford University
Kinetics of drug macromolecule complex formation	\$712,921	Q2.Other	University of California, San Diego
In vivo targeted gene silencing, a novel method	\$192,500	Q2.Other	Indiana University-Purdue University Indianapolis
In-vivo imaging of neuronal structure and function in a reversible mouse model for autism.	\$0	Q2.S.D	Baylor College of Medicine

Project Title	Funding	Strategic Plan Objective	Institution
Investigation of social brain circuits in mouse models of the 16p11.2 locus	\$175,000	Q2.Other	Cold Spring Harbor Laboratory
Investigation of sex differences associated with autism candidate gene, Cyfip1	\$32,413	Q2.S.B	University of California, Los Angeles
Investigation of protocadherin-10 in MEF2- and FMRP-mediated synapse elimination	\$53,942	Q2.S.D	University of Texas Southwestern Medical Center
Investigation of a possible role of the protocahderin gene cluster in autism	\$150,000	Q2.Other	Columbia University
Investigating the homeostatic role of MeCP2 in mature brain	\$35,832	Q2.S.D	Baylor College of Medicine
Inhibitory mechanisms for sensory map plasticity in cerebral cortex	\$328,644	Q2.Other	University of California, Berkeley
Impact of SynGAP1 mutations on synapse maturation and cognitive development	\$789,981	Q2.Other	The Scripps Research Institute - Florida
Imaging signal transduction in single dendritic spines	\$382,200	Q2.Other	Duke University
Imaging PTEN-induced changes in adult cortical structure and function in vivo	\$300,156	Q2.Other	University of California, Los Angeles
Identification of targets for the neuronal E3 ubiquitin ligase PAM	\$0	Q2.S.D	Massachusetts General Hospital
Identification of genetic pathways that regulate neuronal circuits in C. elegans	\$47,114	Q2.Other	University of California, San Diego
Identification of candidate genes at the synapse in autism spectrum disorders	\$168,839	Q2.Other	Yale University
Homeostatic regulation of presynaptic function by dendritic mTORC1	\$32,747	Q2.Other	University of Michigan
High throughput screen for small molecule probes for neural network development	\$405,000	Q2.Other	Johns Hopkins University
High-throughput DNA sequencing method for probing the connectivity of neural circuits at single-neuron resolution	\$464,475	Q2.Other	Cold Spring Harbor Laboratory
High metabolic demand of fast-spiking cortical interneurons underlying the etiology of autism	\$54,500	Q2.Other	Weill Cornell Medical College
Glial control of neuronal receptive ending morphology	\$418,275	Q2.Other	The Rockefeller University
Genomic and epigenomic effects of large CNV in neurons from iPSC	\$2,355,000	Q2.S.G	Stanford University
Genetic studies of autism-related Drosophila neurexin and neuroligin	\$489,104	Q2.Other	University of North Carolina at Chapel Hill
Genetic rescue of fragile X syndrome in mice by targeted deletion of PIKE	\$0	Q2.S.D	Albert Einstein College of Medicine of Yeshiva University
Genetic model to study the ASD-associated gene A2BP1 and its target PAC1	\$62,500	Q2.Other	Weizmann Institute of Science

Project Title	Funding	Strategic Plan Objective	Institution
Genetic and developmental analyses of fragile X mental retardation protein	\$438,391	Q2.S.D	Vanderbilt University Medical Center
Genetically defined stem cell models of Rett and fragile X syndrome	\$350,000	Q2.S.D	Whitehead Institute for Biomedical Research
Function of neurexins	\$473,710	Q2.Other	Stanford University
Function and structure adaptations in forebrain development	\$541,770	Q2.Other	University of Southern California
Function and dysfunction of neuroligins in synaptic circuits	\$750,000	Q2.Other	Stanford University
Functional role of IL-6 in fetal brain development and abnormal behavior	\$42,232	Q2.Other	California Institute of Technology
Functional circuit disorders of sensory cortex in ASD and RTT	\$254,976	Q2.S.D	University of Pennsylvania
Functional and anatomical recovery of synaptic deficits in a mouse model of Angelman Syndrome	\$56,000	Q2.S.D	University of North Carolina at Chapel Hill
Functional analysis of patient mutations in EPHB2, an ASD candidate gene- Project 1	\$177,512	Q2.Other	Yale University
Functional analysis of patient mutations in EPHB2, an ASD candidate gene- Core	\$62,475	Q2.Other	McLean Hospital
Functional analysis of neurexin IV in Drosophila	\$0	Q2.Other	University of California, Los Angeles
Functional analysis of EFR3A mutations associated with autism	\$156,250	Q2.Other	Yale University
Fragile X syndrome target analysis and its contribution to autism	\$134,477	Q2.S.D	The Rockefeller University
Extended tracking of single synaptic proteins with upconverting nanoparticles	\$10,819	Q2.Other	University of California; Lawrence Berkeley National Laboratory
Excessive cap-dependent translation as a molecular mechanism underlying ASD	\$0	Q2.Other	New York University
ERK signaling in autism associated with copy number variation of 16p11.2	\$51,290	Q2.Other	Case Western Reserve University
Engrailed targets and the control of synaptic circuits in Drosophila	\$352,100	Q2.Other	University of Puerto Rico Medical Sciences Campus
Engrailed genes and cerebellum morphology, spatial gene expression and circuitry	\$470,003	Q2.Other	Sloan-Kettering Institute for Cancer Research
Endosomal NHE6 in long-range connectivity and autism	\$62,500	Q2.Other	Brown University
Elucidation of the developmental role of Jakmip1, and autism-susceptibility gene	\$31,474	Q2.Other	University of California, Los Angeles
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	Q2.S.D	George Washington University
Elucidating the function of class 4 semaphorins in GABAergic synapse formation (supplement)	\$23,015	Q2.Other	Brandeis University

Project Title	Funding	Strategic Plan Objective	Institution
Elucidating the function of class 4 semaphorins in GABAergic synapse formation	\$336,922	Q2.Other	Brandeis University
Effect of paternal age on mutational burden and behavior in mice	\$222,000	Q2.Other	University of North Carolina at Chapel Hill
Early expression of autism spectrum disorder in experimental animals	\$0	Q2.Other	Neurochlore
Dysregulation of protein synthesis in fragile X syndrome	\$1,117,731	Q2.S.D	National Institutes of Health
Dysregulation of mTOR signaling in fragile X syndrome (supplement)	\$72,034	Q2.S.D	Albert Einstein College of Medicine of Yeshiva University
Dysregulation of mTOR signaling in fragile X syndrome	\$415,000	Q2.S.D	Albert Einstein College of Medicine of Yeshiva University
Dynamic regulation of Shank3 and ASD	\$646,316	Q2.Other	Johns Hopkins University
Dual modulators of GABA-A and Alpha7 nicotinic receptors for treating autism	\$615,849	Q2.Other	University of California, Irvine
Developing novel automated apparatus for studying battery of social behaviors in mutant mouse models for autism	\$0	Q2.Other	Weizmann Institute of Science
Defining cells and circuits affected in autism spectrum disorders	\$336,872	Q2.Other	The Rockefeller University
Deciphering the function and regulation of AUTS2	\$0	Q2.Other	University of California, San Francisco
Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$278,656	Q2.S.D	University of Texas Southwestern Medical Center
Cortactin and spine dysfunction in fragile X	\$32,875	Q2.S.D	University of California, Irvine
Coordinated control of synapse development by autism-linked genes	\$0	Q2.S.D	University of Texas Southwestern Medical Center
Characterizing the regulatory pathways and regulation of AUTS2	\$57,964	Q2.Other	University of California, San Francisco
Cerebellar plasticity and learning in a mouse model of autism	\$156,250	Q2.Other	University of Chicago
Cell adhesion molecules in CNS development	\$534,562	Q2.Other	The Scripps Research Institute - California
Caspr2 as an autism candidate gene: A proteomic approach to function & structure	\$312,000	Q2.Other	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Bi-directional regulation of Ube3a stability by cyclic AMP-dependent kinase	\$60,000	Q2.S.D	University of North Carolina at Chapel Hill
BDNF and the restoration of synaptic plasticity in fragile X and autism	\$470,063	Q2.S.D	University of California, Irvine
Autism phenotypes in Tuberous Sclerosis: Risk factors, features & architecture	\$149,881	Q2.S.D	King's College London
Autism and the insula: Genomic and neural circuits	\$254,696	Q2.Other	California Institute of Technology
A stem cell based platform for identification of common defects in autism spectrum disorders	\$0	Q2.S.D	The Scripps Research Institute - California

Project Title	Funding	Strategic Plan Objective	Institution
A sex-specific dissection of autism genetics	\$0	Q2.S.B	University of California, San Francisco
A novel transplantation assay to study human PTEN ASD alleles in GABAergic interneurons	\$60,000	Q2.Other	University of California, San Francisco
Analysis of Shank3 complete and temporal and spatial specific knockout mice	\$481,448	Q2.Other	Duke University
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$0	Q2.S.E	University of Melbourne
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$0	Q2.S.E	University of Melbourne
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$0	Q2.S.E	University of Melbourne
Allelic choice in Rett syndrome	\$390,481	Q2.S.D	Winifred Masterson Burke Medical Research Institute
A functional genomic analysis of the cerebral cortex	\$256,413	Q2.Other	University of California, Los Angeles
A family-genetic study of autism and fragile X syndrome	\$751,420	Q2.S.D	Northwestern University
Activity-dependent phosphorylation of MeCP2	\$177,055	Q2.S.D	Harvard Medical School
A cerebellar mutant for investigating mechanisms of autism in Tuberous Sclerosis	\$149,958	Q2.S.D	Boston Children's Hospital
Aberrant synaptic form and function due to TSC-mTOR-related mutation in autism spectrum disorders	\$300,000	Q2.S.D	Columbia University